MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. SAE-AISI 4815 Steel

7116 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4815 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is SAE-AISI 4815 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.8
23
Fatigue Strength, MPa 160
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220
350
Tensile Strength: Ultimate (UTS), MPa 370
550
Tensile Strength: Yield (Proof), MPa 330
370

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
6.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.3
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1150
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
110
Resilience: Unit (Modulus of Resilience), kJ/m3 790
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 35
20
Strength to Weight: Bending, points 39
19
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0.13 to 0.18
Copper (Cu), % 0.5 to 1.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
94.7 to 95.9
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0.4 to 0.6
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
3.3 to 3.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0