MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. C92500 Bronze

7116 aluminum belongs to the aluminum alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 7.8
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 370
310
Tensile Strength: Yield (Proof), MPa 330
190

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 520
870
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 150
63
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
12
Electrical Conductivity: Equal Weight (Specific), % IACS 140
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
30
Resilience: Unit (Modulus of Resilience), kJ/m3 790
170
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 35
9.8
Strength to Weight: Bending, points 39
12
Thermal Diffusivity, mm2/s 58
20
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0.5 to 1.1
85 to 88
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0 to 0.5
Residuals, % 0
0 to 0.7