MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. N06060 Nickel

7116 aluminum belongs to the aluminum alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 7.8
45
Fatigue Strength, MPa 160
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
82
Shear Strength, MPa 220
490
Tensile Strength: Ultimate (UTS), MPa 370
700
Tensile Strength: Yield (Proof), MPa 330
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 520
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
250
Resilience: Unit (Modulus of Resilience), kJ/m3 790
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 35
22
Strength to Weight: Bending, points 39
20
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0.5 to 1.1
0.25 to 1.3
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 14
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0.25 to 1.3
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0