MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. S40920 Stainless Steel

7116 aluminum belongs to the aluminum alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.8
22
Fatigue Strength, MPa 160
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 220
270
Tensile Strength: Ultimate (UTS), MPa 370
430
Tensile Strength: Yield (Proof), MPa 330
190

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
78
Resilience: Unit (Modulus of Resilience), kJ/m3 790
97
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 35
15
Strength to Weight: Bending, points 39
16
Thermal Diffusivity, mm2/s 58
6.9
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 0.5 to 1.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
85.1 to 89.4
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.050
0.15 to 0.5
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0