MakeItFrom.com
Menu (ESC)

7116 Aluminum vs. S44660 Stainless Steel

7116 aluminum belongs to the aluminum alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7116 aluminum and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 7.8
20
Fatigue Strength, MPa 160
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 220
410
Tensile Strength: Ultimate (UTS), MPa 370
660
Tensile Strength: Yield (Proof), MPa 330
510

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
4.3
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
120
Resilience: Unit (Modulus of Resilience), kJ/m3 790
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 35
24
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 58
4.5
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 91.5 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0.5 to 1.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
60.4 to 71
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0.2 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0