MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. 2218 Aluminum

Both 712.0 aluminum and 2218 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 4.5 to 4.7
6.8 to 10
Fatigue Strength, MPa 140 to 180
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 180
210 to 250
Tensile Strength: Ultimate (UTS), MPa 250 to 260
330 to 430
Tensile Strength: Yield (Proof), MPa 180 to 200
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 610
510
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
37
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 3.0
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
450 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
45
Strength to Weight: Axial, points 24 to 25
30 to 39
Strength to Weight: Bending, points 30 to 31
34 to 41
Thermal Diffusivity, mm2/s 62
52
Thermal Shock Resistance, points 11
15 to 19

Alloy Composition

Aluminum (Al), % 90.7 to 94
88.8 to 93.6
Chromium (Cr), % 0.4 to 0.6
0 to 0.1
Copper (Cu), % 0 to 0.25
3.5 to 4.5
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 0.5 to 0.65
1.2 to 1.8
Manganese (Mn), % 0 to 0.1
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0 to 0.3
0 to 0.9
Titanium (Ti), % 0.15 to 0.25
0
Zinc (Zn), % 5.0 to 6.5
0 to 0.25
Residuals, % 0
0 to 0.15