MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. AISI 420 Stainless Steel

712.0 aluminum belongs to the aluminum alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.5 to 4.7
8.0 to 15
Fatigue Strength, MPa 140 to 180
220 to 670
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 180
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 250 to 260
690 to 1720
Tensile Strength: Yield (Proof), MPa 180 to 200
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 190
620
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 610
1450
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 160
27
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1140
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
380 to 4410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
25 to 62
Strength to Weight: Bending, points 30 to 31
22 to 41
Thermal Diffusivity, mm2/s 62
7.3
Thermal Shock Resistance, points 11
25 to 62

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0.4 to 0.6
12 to 14
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
82.3 to 87.9
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.25
0
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0