MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. ASTM A182 Grade F3V

712.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.5 to 4.7
20
Fatigue Strength, MPa 140 to 180
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 180
410
Tensile Strength: Ultimate (UTS), MPa 250 to 260
660
Tensile Strength: Yield (Proof), MPa 180 to 200
470

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 190
470
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1140
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
23
Strength to Weight: Bending, points 30 to 31
21
Thermal Diffusivity, mm2/s 62
10
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0.4 to 0.6
2.8 to 3.2
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
94.4 to 95.7
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.25
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0