MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. ASTM A182 Grade F911

712.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F911 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.5 to 4.7
20
Fatigue Strength, MPa 140 to 180
350
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 180
430
Tensile Strength: Ultimate (UTS), MPa 250 to 260
690
Tensile Strength: Yield (Proof), MPa 180 to 200
500

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 190
600
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 610
1440
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 160
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1140
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
24
Strength to Weight: Bending, points 30 to 31
22
Thermal Diffusivity, mm2/s 62
6.9
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 90.7 to 94
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0.4 to 0.6
8.5 to 9.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
86.2 to 88.9
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.25
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.2
0