MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. AWS ER100S-1

712.0 aluminum belongs to the aluminum alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.5 to 4.7
18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 250 to 260
770
Tensile Strength: Yield (Proof), MPa 180 to 200
700

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 160
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.6
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1140
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
27
Strength to Weight: Bending, points 30 to 31
24
Thermal Diffusivity, mm2/s 62
13
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 90.7 to 94
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.4 to 0.6
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 0 to 0.5
93.5 to 96.9
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.3
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.25
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5