MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. B390.0 Aluminum

Both 712.0 aluminum and B390.0 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
76
Elongation at Break, % 4.5 to 4.7
0.88
Fatigue Strength, MPa 140 to 180
170
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
29
Tensile Strength: Ultimate (UTS), MPa 250 to 260
320
Tensile Strength: Yield (Proof), MPa 180 to 200
250

Thermal Properties

Latent Heat of Fusion, J/g 380
640
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 610
580
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
410
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 24 to 25
32
Strength to Weight: Bending, points 30 to 31
38
Thermal Diffusivity, mm2/s 62
55
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 90.7 to 94
72.7 to 79.6
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.25
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 0.5 to 0.65
0.45 to 0.65
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.3
16 to 18
Titanium (Ti), % 0.15 to 0.25
0 to 0.1
Zinc (Zn), % 5.0 to 6.5
0 to 1.5
Residuals, % 0
0 to 0.2