MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. EN 1.4652 Stainless Steel

712.0 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
270
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 4.5 to 4.7
45
Fatigue Strength, MPa 140 to 180
450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 180
610
Tensile Strength: Ultimate (UTS), MPa 250 to 260
880
Tensile Strength: Yield (Proof), MPa 180 to 200
490

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 160
9.8
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.4
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
340
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 24 to 25
30
Strength to Weight: Bending, points 30 to 31
25
Thermal Diffusivity, mm2/s 62
2.6
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.4 to 0.6
23 to 25
Copper (Cu), % 0 to 0.25
0.3 to 0.6
Iron (Fe), % 0 to 0.5
38.3 to 46.3
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0.15 to 0.25
0
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0