MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. EN 1.4962 Stainless Steel

712.0 aluminum belongs to the aluminum alloys classification, while EN 1.4962 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is EN 1.4962 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 90
190 to 210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.5 to 4.7
22 to 34
Fatigue Strength, MPa 140 to 180
210 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 180
420 to 440
Tensile Strength: Ultimate (UTS), MPa 250 to 260
630 to 690
Tensile Strength: Yield (Proof), MPa 180 to 200
260 to 490

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 190
910
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 610
1440
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
4.1
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
170 to 610
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 24 to 25
21 to 24
Strength to Weight: Bending, points 30 to 31
20 to 21
Thermal Diffusivity, mm2/s 62
3.7
Thermal Shock Resistance, points 11
14 to 16

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0
0.070 to 0.15
Chromium (Cr), % 0.4 to 0.6
15.5 to 17.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
62.1 to 69
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.25
0.4 to 0.7
Tungsten (W), % 0
2.5 to 3.0
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0