MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. EN 2.4665 Nickel

712.0 aluminum belongs to the aluminum alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 4.5 to 4.7
34
Fatigue Strength, MPa 140 to 180
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 180
520
Tensile Strength: Ultimate (UTS), MPa 250 to 260
790
Tensile Strength: Yield (Proof), MPa 180 to 200
300

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.0
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
210
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 24 to 25
26
Strength to Weight: Bending, points 30 to 31
22
Thermal Diffusivity, mm2/s 62
3.2
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 90.7 to 94
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0.4 to 0.6
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.5
17 to 20
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.25
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0