MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. Nickel 333

712.0 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 4.5 to 4.7
34
Fatigue Strength, MPa 140 to 180
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 180
420
Tensile Strength: Ultimate (UTS), MPa 250 to 260
630
Tensile Strength: Yield (Proof), MPa 180 to 200
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 24 to 25
21
Strength to Weight: Bending, points 30 to 31
19
Thermal Diffusivity, mm2/s 62
2.9
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 0.6
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
9.3 to 24.5
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.25
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 5.0 to 6.5
0
Residuals, % 0 to 0.2
0