MakeItFrom.com
Menu (ESC)

712.0 Aluminum vs. C64700 Bronze

712.0 aluminum belongs to the aluminum alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 712.0 aluminum and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 4.5 to 4.7
9.0
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 27
44
Shear Strength, MPa 180
390
Tensile Strength: Ultimate (UTS), MPa 250 to 260
660
Tensile Strength: Yield (Proof), MPa 180 to 200
560

Thermal Properties

Latent Heat of Fusion, J/g 380
220
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 610
1030
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 160
210
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
38
Electrical Conductivity: Equal Weight (Specific), % IACS 120
38

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
57
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 270
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 24 to 25
21
Strength to Weight: Bending, points 30 to 31
19
Thermal Diffusivity, mm2/s 62
59
Thermal Shock Resistance, points 11
24

Alloy Composition

Aluminum (Al), % 90.7 to 94
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.25
95.8 to 98
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.5 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
1.6 to 2.2
Silicon (Si), % 0 to 0.3
0.4 to 0.8
Titanium (Ti), % 0.15 to 0.25
0
Zinc (Zn), % 5.0 to 6.5
0 to 0.5
Residuals, % 0
0 to 0.5