MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. ACI-ASTM CD4MCuN Steel

713.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD4MCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is ACI-ASTM CD4MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.9 to 4.3
18
Fatigue Strength, MPa 63 to 120
340
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 240 to 260
770
Tensile Strength: Yield (Proof), MPa 170
550

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.5
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 22 to 23
28
Strength to Weight: Bending, points 28 to 29
24
Thermal Diffusivity, mm2/s 57
4.5
Thermal Shock Resistance, points 10 to 11
21

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.35
24.5 to 26.5
Copper (Cu), % 0.4 to 1.0
2.7 to 3.3
Iron (Fe), % 0 to 1.1
59.5 to 66.3
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
1.7 to 2.3
Nickel (Ni), % 0 to 0.15
4.7 to 6.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0