MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. AWS E309Nb

713.0 aluminum belongs to the aluminum alloys classification, while AWS E309Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is AWS E309Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.9 to 4.3
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 240 to 260
620

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.4
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1110
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 22 to 23
22
Strength to Weight: Bending, points 28 to 29
21
Thermal Diffusivity, mm2/s 57
4.0
Thermal Shock Resistance, points 10 to 11
16

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.35
22 to 25
Copper (Cu), % 0.4 to 1.0
0 to 0.75
Iron (Fe), % 0 to 1.1
54.8 to 64.8
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.15
12 to 14
Niobium (Nb), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0