MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. EN 1.7725 Steel

713.0 aluminum belongs to the aluminum alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74 to 75
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.9 to 4.3
14
Fatigue Strength, MPa 63 to 120
390 to 550
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 240 to 260
830 to 1000
Tensile Strength: Yield (Proof), MPa 170
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
980 to 1940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 22 to 23
29 to 35
Strength to Weight: Bending, points 28 to 29
25 to 28
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 10 to 11
24 to 29

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0 to 0.35
1.3 to 1.7
Copper (Cu), % 0.4 to 1.0
0
Iron (Fe), % 0 to 1.1
95.7 to 97.5
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0

Comparable Variants