MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. SAE-AISI 4720 Steel

713.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4720 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is SAE-AISI 4720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74 to 75
150
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.9 to 4.3
25
Fatigue Strength, MPa 63 to 120
260
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 180
310
Tensile Strength: Ultimate (UTS), MPa 240 to 260
490
Tensile Strength: Yield (Proof), MPa 170
350

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 22 to 23
17
Strength to Weight: Bending, points 28 to 29
18
Thermal Diffusivity, mm2/s 57
10
Thermal Shock Resistance, points 10 to 11
14

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0 to 0.35
0.35 to 0.55
Copper (Cu), % 0.4 to 1.0
0
Iron (Fe), % 0 to 1.1
96.7 to 97.8
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0.5 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.15
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0