MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. R05240 Alloy

713.0 aluminum belongs to the aluminum alloys classification, while R05240 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is R05240 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
150
Elongation at Break, % 3.9 to 4.3
25
Poisson's Ratio 0.32
0.36
Shear Modulus, GPa 27
57
Tensile Strength: Ultimate (UTS), MPa 240 to 260
270
Tensile Strength: Yield (Proof), MPa 170
170

Thermal Properties

Latent Heat of Fusion, J/g 370
210
Specific Heat Capacity, J/kg-K 860
190
Thermal Expansion, µm/m-K 24
6.8

Otherwise Unclassified Properties

Density, g/cm3 3.1
14
Embodied Water, L/kg 1110
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
59
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
90
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 45
13
Strength to Weight: Axial, points 22 to 23
5.4
Strength to Weight: Bending, points 28 to 29
6.8
Thermal Shock Resistance, points 10 to 11
18

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 0.4 to 1.0
0
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 1.1
0 to 0.010
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0 to 0.15
0 to 0.010
Niobium (Nb), % 0
35 to 42
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.0050
Tantalum (Ta), % 0
57.9 to 65
Titanium (Ti), % 0 to 0.25
0 to 0.010
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0