MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. C90400 Bronze

7175 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.8 to 5.9
24
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 520 to 570
310
Tensile Strength: Yield (Proof), MPa 430 to 490
180

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
990
Melting Onset (Solidus), °C 480
850
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 140
75
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
12
Electrical Conductivity: Equal Weight (Specific), % IACS 99
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 48 to 52
10
Strength to Weight: Bending, points 48 to 51
12
Thermal Diffusivity, mm2/s 53
23
Thermal Shock Resistance, points 23 to 25
11

Alloy Composition

Aluminum (Al), % 88 to 91.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
86 to 89
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7