MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. AWS E310Nb

7178 aluminum belongs to the aluminum alloys classification, while AWS E310Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is AWS E310Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
29
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 240 to 640
620

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
5.3
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1110
200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
22
Strength to Weight: Bending, points 28 to 54
20
Thermal Diffusivity, mm2/s 47
3.8
Thermal Shock Resistance, points 10 to 28
15

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.18 to 0.28
25 to 28
Copper (Cu), % 1.6 to 2.4
0 to 0.75
Iron (Fe), % 0 to 0.5
44.1 to 53.3
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
20 to 22
Niobium (Nb), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0