MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. C90400 Bronze

7178 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.5 to 12
24
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 240 to 640
310
Tensile Strength: Yield (Proof), MPa 120 to 560
180

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
990
Melting Onset (Solidus), °C 480
850
Specific Heat Capacity, J/kg-K 860
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
12
Electrical Conductivity: Equal Weight (Specific), % IACS 91
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
65
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 21 to 58
10
Strength to Weight: Bending, points 28 to 54
12
Thermal Diffusivity, mm2/s 47
23
Thermal Shock Resistance, points 10 to 28
11

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
86 to 89
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7