MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. S15700 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
1.1 to 29
Fatigue Strength, MPa 120 to 210
370 to 770
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 140 to 380
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 240 to 640
1180 to 1890
Tensile Strength: Yield (Proof), MPa 120 to 560
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
640 to 4660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
42 to 67
Strength to Weight: Bending, points 28 to 54
32 to 43
Thermal Diffusivity, mm2/s 47
4.2
Thermal Shock Resistance, points 10 to 28
39 to 63

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.18 to 0.28
14 to 16
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
69.6 to 76.8
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0

Comparable Variants