MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. EN 1.4982 Stainless Steel

7475 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 12
28
Fatigue Strength, MPa 190 to 210
420
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 320 to 350
490
Tensile Strength: Ultimate (UTS), MPa 530 to 590
750
Tensile Strength: Yield (Proof), MPa 440 to 520
570

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.9
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 49 to 55
27
Strength to Weight: Bending, points 48 to 52
23
Thermal Diffusivity, mm2/s 53 to 63
3.4
Thermal Shock Resistance, points 23 to 26
17

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0.18 to 0.25
14 to 16
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.12
61.8 to 69.7
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0