MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. 5154 Aluminum

Both 771.0 aluminum and 5154 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.7 to 6.5
3.4 to 20
Fatigue Strength, MPa 92 to 180
100 to 160
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 250 to 370
240 to 360
Tensile Strength: Yield (Proof), MPa 210 to 350
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 380
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 620
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 140 to 150
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
32
Electrical Conductivity: Equal Weight (Specific), % IACS 82
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 23 to 35
25 to 37
Strength to Weight: Bending, points 29 to 39
32 to 42
Thermal Diffusivity, mm2/s 54 to 58
52
Thermal Shock Resistance, points 11 to 16
10 to 16

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
94.4 to 96.8
Chromium (Cr), % 0.060 to 0.2
0.15 to 0.35
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.4
Magnesium (Mg), % 0.8 to 1.0
3.1 to 3.9
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.15
0 to 0.25
Titanium (Ti), % 0.1 to 0.2
0 to 0.2
Zinc (Zn), % 6.5 to 7.5
0 to 0.2
Residuals, % 0
0 to 0.15