MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. 6025 Aluminum

Both 771.0 aluminum and 6025 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.7 to 6.5
2.8 to 10
Fatigue Strength, MPa 92 to 180
67 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 250 to 370
190 to 240
Tensile Strength: Yield (Proof), MPa 210 to 350
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 620
550
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 140 to 150
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
33
Electrical Conductivity: Equal Weight (Specific), % IACS 82
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
33 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 23 to 35
19 to 24
Strength to Weight: Bending, points 29 to 39
26 to 31
Thermal Diffusivity, mm2/s 54 to 58
54
Thermal Shock Resistance, points 11 to 16
8.2 to 10

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
91.7 to 96.3
Chromium (Cr), % 0.060 to 0.2
0 to 0.2
Copper (Cu), % 0 to 0.1
0.2 to 0.7
Iron (Fe), % 0 to 0.15
0 to 0.7
Magnesium (Mg), % 0.8 to 1.0
2.1 to 3.0
Manganese (Mn), % 0 to 0.1
0.6 to 1.4
Silicon (Si), % 0 to 0.15
0.8 to 1.5
Titanium (Ti), % 0.1 to 0.2
0 to 0.2
Zinc (Zn), % 6.5 to 7.5
0 to 0.5
Residuals, % 0
0 to 0.15