MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. AISI 316L Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 6.5
9.0 to 50
Fatigue Strength, MPa 92 to 180
170 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 250 to 370
530 to 1160
Tensile Strength: Yield (Proof), MPa 210 to 350
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
93 to 1880
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23 to 35
19 to 41
Strength to Weight: Bending, points 29 to 39
18 to 31
Thermal Diffusivity, mm2/s 54 to 58
4.1
Thermal Shock Resistance, points 11 to 16
12 to 25

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.060 to 0.2
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
62 to 72
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0