MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. ASTM A387 Grade 21L Class 1

771.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
150
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 6.5
21
Fatigue Strength, MPa 92 to 180
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 250 to 370
500
Tensile Strength: Yield (Proof), MPa 210 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Maximum Temperature: Mechanical, °C 180
480
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 620
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1130
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
84
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
18
Strength to Weight: Bending, points 29 to 39
18
Thermal Diffusivity, mm2/s 54 to 58
11
Thermal Shock Resistance, points 11 to 16
14

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.060 to 0.2
2.8 to 3.3
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
94.4 to 96.1
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0