MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. ASTM Grade HL Steel

771.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 6.5
11
Fatigue Strength, MPa 92 to 180
150
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 250 to 370
500
Tensile Strength: Yield (Proof), MPa 210 to 350
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 620
1340
Specific Heat Capacity, J/kg-K 870
490
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
48
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23 to 35
18
Strength to Weight: Bending, points 29 to 39
18
Thermal Shock Resistance, points 11 to 16
11

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0.060 to 0.2
28 to 32
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
40.8 to 53.8
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0