MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 1.4466 Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while EN 1.4466 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 1.4466 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 6.5
42
Fatigue Strength, MPa 92 to 180
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 250 to 370
640
Tensile Strength: Yield (Proof), MPa 210 to 350
280

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.0
Embodied Energy, MJ/kg 150
70
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
220
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 23 to 35
22
Strength to Weight: Bending, points 29 to 39
21
Thermal Diffusivity, mm2/s 54 to 58
3.7
Thermal Shock Resistance, points 11 to 16
14

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.060 to 0.2
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
45.6 to 52.9
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0