MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 1.4807 Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 6.5
4.5
Fatigue Strength, MPa 92 to 180
120
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 250 to 370
480
Tensile Strength: Yield (Proof), MPa 210 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 620
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140 to 150
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 82
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.8
Embodied Energy, MJ/kg 150
97
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
18
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
17
Strength to Weight: Bending, points 29 to 39
17
Thermal Diffusivity, mm2/s 54 to 58
3.2
Thermal Shock Resistance, points 11 to 16
12

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.060 to 0.2
17 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
36.6 to 46.7
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0