MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 1.5515 Steel

771.0 aluminum belongs to the aluminum alloys classification, while EN 1.5515 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 1.5515 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
150 to 170
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 250 to 370
490 to 1760

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
48
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1130
47

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
17 to 63
Strength to Weight: Bending, points 29 to 39
18 to 41
Thermal Diffusivity, mm2/s 54 to 58
13
Thermal Shock Resistance, points 11 to 16
14 to 52

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.35 to 0.4
Chromium (Cr), % 0.060 to 0.2
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.15
97.8 to 98.9
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.15 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0