MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. EN 2.4654 Nickel

771.0 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.7 to 6.5
17
Fatigue Strength, MPa 92 to 180
460
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 250 to 370
1250
Tensile Strength: Yield (Proof), MPa 210 to 350
850

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 620
1330
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140 to 150
13
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
190
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
1810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 23 to 35
42
Strength to Weight: Bending, points 29 to 39
31
Thermal Diffusivity, mm2/s 54 to 58
3.3
Thermal Shock Resistance, points 11 to 16
37

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0.060 to 0.2
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 2.0
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
2.8 to 3.3
Zinc (Zn), % 6.5 to 7.5
0
Zirconium (Zr), % 0
0.020 to 0.080
Residuals, % 0 to 0.15
0