MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. Grade 29 Titanium

771.0 aluminum belongs to the aluminum alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.7 to 6.5
6.8 to 11
Fatigue Strength, MPa 92 to 180
460 to 510
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 250 to 370
930 to 940
Tensile Strength: Yield (Proof), MPa 210 to 350
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 630
1610
Melting Onset (Solidus), °C 620
1560
Specific Heat Capacity, J/kg-K 870
560
Thermal Conductivity, W/m-K 140 to 150
7.3
Thermal Expansion, µm/m-K 24
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
39
Embodied Energy, MJ/kg 150
640
Embodied Water, L/kg 1130
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
3420 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 23 to 35
58 to 59
Strength to Weight: Bending, points 29 to 39
47 to 48
Thermal Diffusivity, mm2/s 54 to 58
2.9
Thermal Shock Resistance, points 11 to 16
68 to 69

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.1 to 0.2
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0
0 to 0.4