MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. Grade Ti-Pd18 Titanium

771.0 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
320
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.7 to 6.5
17
Fatigue Strength, MPa 92 to 180
350
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 250 to 370
710
Tensile Strength: Yield (Proof), MPa 210 to 350
540

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
330
Melting Completion (Liquidus), °C 630
1640
Melting Onset (Solidus), °C 620
1590
Specific Heat Capacity, J/kg-K 870
550
Thermal Conductivity, W/m-K 140 to 150
8.2
Thermal Expansion, µm/m-K 24
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.7

Otherwise Unclassified Properties

Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
1380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 23 to 35
44
Strength to Weight: Bending, points 29 to 39
39
Thermal Diffusivity, mm2/s 54 to 58
3.3
Thermal Shock Resistance, points 11 to 16
52

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.1 to 0.2
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0
0 to 0.4