MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. SAE-AISI 4620 Steel

771.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4620 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is SAE-AISI 4620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 120
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.7 to 6.5
16 to 27
Fatigue Strength, MPa 92 to 180
260 to 360
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 250 to 370
490 to 680
Tensile Strength: Yield (Proof), MPa 210 to 350
350 to 550

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 150
47
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1130
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
330 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
17 to 24
Strength to Weight: Bending, points 29 to 39
18 to 22
Thermal Diffusivity, mm2/s 54 to 58
13
Thermal Shock Resistance, points 11 to 16
15 to 20

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
96.4 to 97.4
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0