MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. C48500 Brass

771.0 aluminum belongs to the aluminum alloys classification, while C48500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.7 to 6.5
13 to 40
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 250 to 370
400 to 500
Tensile Strength: Yield (Proof), MPa 210 to 350
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 620
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140 to 150
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
26
Electrical Conductivity: Equal Weight (Specific), % IACS 82
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
120 to 500
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 23 to 35
14 to 17
Strength to Weight: Bending, points 29 to 39
15 to 17
Thermal Diffusivity, mm2/s 54 to 58
38
Thermal Shock Resistance, points 11 to 16
13 to 17

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
59 to 62
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
34.3 to 39.2
Residuals, % 0
0 to 0.4