MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. C52400 Bronze

771.0 aluminum belongs to the aluminum alloys classification, while C52400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 250 to 370
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
1000
Melting Onset (Solidus), °C 620
840
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 140 to 150
50
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
11
Electrical Conductivity: Equal Weight (Specific), % IACS 82
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1130
390

Common Calculations

Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 23 to 35
14 to 28
Strength to Weight: Bending, points 29 to 39
15 to 23
Thermal Diffusivity, mm2/s 54 to 58
15
Thermal Shock Resistance, points 11 to 16
17 to 32

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
87.8 to 91
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0 to 0.2
Residuals, % 0
0 to 0.5