MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. C70260 Copper

771.0 aluminum belongs to the aluminum alloys classification, while C70260 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 1.7 to 6.5
9.5 to 19
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 250 to 370
520 to 760
Tensile Strength: Yield (Proof), MPa 210 to 350
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 380
220
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 630
1060
Melting Onset (Solidus), °C 620
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140 to 150
160
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 82
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
710 to 1810
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 23 to 35
16 to 24
Strength to Weight: Bending, points 29 to 39
16 to 21
Thermal Diffusivity, mm2/s 54 to 58
45
Thermal Shock Resistance, points 11 to 16
18 to 27

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
95.8 to 98.8
Iron (Fe), % 0 to 0.15
0
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0.2 to 0.7
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0
0 to 0.5