MakeItFrom.com
Menu (ESC)

771.0 Aluminum vs. N08031 Stainless Steel

771.0 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 771.0 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.7 to 6.5
45
Fatigue Strength, MPa 92 to 180
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 250 to 370
730
Tensile Strength: Yield (Proof), MPa 210 to 350
310

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140 to 150
12
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1130
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4 to 20
270
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 900
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 23 to 35
25
Strength to Weight: Bending, points 29 to 39
22
Thermal Diffusivity, mm2/s 54 to 58
3.1
Thermal Shock Resistance, points 11 to 16
14

Alloy Composition

Aluminum (Al), % 90.5 to 92.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.060 to 0.2
26 to 28
Copper (Cu), % 0 to 0.1
1.0 to 1.4
Iron (Fe), % 0 to 0.15
29 to 36.9
Magnesium (Mg), % 0.8 to 1.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.5 to 7.5
0
Residuals, % 0 to 0.15
0