MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. EN 1.4859 Stainless Steel

772.0 aluminum belongs to the aluminum alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 6.3 to 8.4
23
Fatigue Strength, MPa 94 to 160
140
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 260 to 320
490
Tensile Strength: Yield (Proof), MPa 220 to 250
210

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.2
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
91
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 25 to 31
17
Strength to Weight: Bending, points 31 to 36
17
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 11 to 14
11

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0.060 to 0.2
19 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
40.3 to 49
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0