MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. EN 1.8880 Steel

772.0 aluminum belongs to the aluminum alloys classification, while EN 1.8880 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 8.4
16
Fatigue Strength, MPa 94 to 160
470
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 260 to 320
830
Tensile Strength: Yield (Proof), MPa 220 to 250
720

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1140
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
130
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 25 to 31
29
Strength to Weight: Bending, points 31 to 36
25
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 11 to 14
24

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.060 to 0.2
0 to 1.5
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.15
91.9 to 100
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 6.0 to 7.0
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0