MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. CC496K Bronze

772.0 aluminum belongs to the aluminum alloys classification, while CC496K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
97
Elongation at Break, % 6.3 to 8.4
8.6
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 26
36
Tensile Strength: Ultimate (UTS), MPa 260 to 320
210
Tensile Strength: Yield (Proof), MPa 220 to 250
99

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 580
820
Specific Heat Capacity, J/kg-K 870
340
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 3.0
9.2
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1140
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
15
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
50
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 46
17
Strength to Weight: Axial, points 25 to 31
6.5
Strength to Weight: Bending, points 31 to 36
8.6
Thermal Diffusivity, mm2/s 58
17
Thermal Shock Resistance, points 11 to 14
8.1

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
72 to 79.5
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0
13 to 17
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0 to 0.15
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0 to 2.0
Residuals, % 0 to 0.15
0