MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. C48600 Brass

772.0 aluminum belongs to the aluminum alloys classification, while C48600 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 6.3 to 8.4
20 to 25
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 260 to 320
280 to 360
Tensile Strength: Yield (Proof), MPa 220 to 250
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 580
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
28

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 25 to 31
9.5 to 12
Strength to Weight: Bending, points 31 to 36
12 to 14
Thermal Diffusivity, mm2/s 58
36
Thermal Shock Resistance, points 11 to 14
9.3 to 12

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0
Arsenic (As), % 0
0.020 to 0.25
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
59 to 62
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0
1.0 to 2.5
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
33.4 to 39.7
Residuals, % 0
0 to 0.4