MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. C65100 Bronze

772.0 aluminum belongs to the aluminum alloys classification, while C65100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 6.3 to 8.4
2.4 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 260 to 320
280 to 560
Tensile Strength: Yield (Proof), MPa 220 to 250
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 630
1060
Melting Onset (Solidus), °C 580
1030
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
57
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
12
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
39 to 820
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 25 to 31
8.7 to 18
Strength to Weight: Bending, points 31 to 36
11 to 17
Thermal Diffusivity, mm2/s 58
16
Thermal Shock Resistance, points 11 to 14
9.5 to 19

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
94.5 to 99.2
Iron (Fe), % 0 to 0.15
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.7
Silicon (Si), % 0 to 0.15
0.8 to 2.0
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0 to 1.5
Residuals, % 0
0 to 0.5