MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. C93700 Bronze

772.0 aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
99
Elongation at Break, % 6.3 to 8.4
20
Fatigue Strength, MPa 94 to 160
90
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 260 to 320
240
Tensile Strength: Yield (Proof), MPa 220 to 250
130

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 580
760
Specific Heat Capacity, J/kg-K 870
350
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
40
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
79
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 46
17
Strength to Weight: Axial, points 25 to 31
7.5
Strength to Weight: Bending, points 31 to 36
9.6
Thermal Diffusivity, mm2/s 58
15
Thermal Shock Resistance, points 11 to 14
9.4

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
78 to 82
Iron (Fe), % 0 to 0.15
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 6.0 to 7.0
0 to 0.8
Residuals, % 0
0 to 1.0