MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. R30006 Cobalt

772.0 aluminum belongs to the aluminum alloys classification, while R30006 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is R30006 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 6.3 to 8.4
1.0
Fatigue Strength, MPa 94 to 160
260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 260 to 320
900
Tensile Strength: Yield (Proof), MPa 220 to 250
540

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 580
1290
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.7

Otherwise Unclassified Properties

Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1140
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 25
7.8
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 430
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 25 to 31
29
Strength to Weight: Bending, points 31 to 36
24
Thermal Diffusivity, mm2/s 58
3.9
Thermal Shock Resistance, points 11 to 14
26

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0
Carbon (C), % 0
0.9 to 1.4
Chromium (Cr), % 0.060 to 0.2
27 to 32
Cobalt (Co), % 0
48.6 to 68.1
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.15
0 to 3.0
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 0 to 0.15
0 to 2.0
Titanium (Ti), % 0.1 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0 to 0.15
0