MakeItFrom.com
Menu (ESC)

8079 Aluminum vs. EN 1.0590 Steel

8079 aluminum belongs to the aluminum alloys classification, while EN 1.0590 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8079 aluminum and the bottom bar is EN 1.0590 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.2
19
Fatigue Strength, MPa 56
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 150
620
Tensile Strength: Yield (Proof), MPa 120
430

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 190
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 92
14
Thermal Shock Resistance, points 6.4
20

Alloy Composition

Aluminum (Al), % 98.1 to 99.3
0
Carbon (C), % 0
0 to 0.24
Copper (Cu), % 0 to 0.050
0 to 0.6
Iron (Fe), % 0.7 to 1.3
96.4 to 100
Manganese (Mn), % 0
0 to 1.8
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.050 to 0.3
0 to 0.6
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0